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Signatures and Controlled Differential Equations

As we have already seen, the signature is a collection of features that
we can define from a continuous path X: [0, T] — R? (of finite length).

Definition (Depth-N Signature)
The depth-N signature transform of X over the interval [0, t] is given by

SlgO t ({SO t }1:1 ’ {S([),,IZ‘(X }1 ,j=1" o {Sll’ ”" }d [ )’

(1, ,iy=1

Sl (x / / axit Xz - dx

0<S1<So <+ <5<t

where

We can extend the above to define the full path signature (i.e. N = o).
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Signatures and Controlled Differential Equations

Thus, it follows that different entries in the signature can be related as

) . t . . _
Soi M (X) = /0 Soe OO XS
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Signatures and Controlled Differential Equations

Thus, it follows that different entries in the signature can be related as

. . t. . )
%me=A$¥”%MM$

Definition (Controlled differential equation)

We say Y: [0, T] — R" solves a Controlled Differential Equation (CDE) if

t
w=m+/ﬂnma
0

where f: R" — R™%and X : [0, T] — RY
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Signatures and Controlled Differential Equations

Thus, it follows that different entries in the signature can be related as

. . . . i
00 = [ sy o0

Definition (Controlled differential equation)

We say Y: [0, T] — R" solves a Controlled Differential Equation (CDE) if

t
Ve = Yo+ /0 F(Ye)dXe, @)

where f: R” — R™% and X : [0, T] — RY. We often write (1) in the form:
dy; = f(Yy)dX;. 2)

Informal Theorem

“Path Signature + Linear Regression = Linear CDE”
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Neural Controlled Differential Equations (NCDEs)

Whilst CDEs encompass path signatures, they also extend ODEs since

t t ng
0 0 S

That is, when X is continuously differentiable, a CDE can be written as

av,
T =), ©

where g(t,y) = f(y) &.
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Neural Controlled Differential Equations (NCDEs)

Whilst CDEs encompass path signatures, they also extend ODEs since

t t dXs
0 0 S

That is, when Xis continuously differentiable, a CDE can be written as

v,
a5 = 8LV, 4)

where g(t,y) :f(y)%. Hence, we can learn f using the methodology in

[4 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt and David
Duvenaud. Neural Ordinary Differential Equations. NeurIPS 2018.
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.
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Neural Controlled Differential Equations (NCDEs)
We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.

Let X : [0,n] — R¥*! be a continuous path that interpolates this data, so
X(i) = (t;,x;). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.

Let X : [0,n] — R¥*! be a continuous path that interpolates this data, so
X(i) = (t;,x;). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])

The NCDE model involves learnt functions (g, fg and a linear map £y with
t

20) = Gltaxa), 20 =200+ [ flzeHds. 6
0

and the output is either €y(z(T)) or {€g(z(1))}.
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.

Let X : [0,n] — R¥*! be a continuous path that interpolates this data, so
X(i) = (t;,x;). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])

The NCDE model involves learnt functions (g, fg and a linear map £y with
t
2(0) = Go(to, xo), 2(t) = 2(0) + /0 fo(z(s)) dX(s), ()
and the output is either €y(z(T)) or {€g(z(1))}.

The CDE model (5) is discretized, the output is fed into a loss function
(L2, cross entropy, etc) and trained using stochastic gradient descent.
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Neural Controlled Differential Equations (NCDEs)

We observe x = ((to,Xo), (t1,X1), -, (tn, Xn)), with t; € R and x; € RY.

Let X : [0,n] — R¥*! be a continuous path that interpolates this data, so
X(i) = (t;,x;). (e.g. cubic splines [2] and piecewise linear/rectilinear [3])

The NCDE model involves learnt functions (g, fg and a linear map £y with
t
20) = Gltaxa), 20 =200+ [ flzeHds. 6
0
and the output is either €y(z(T)) or {€g(z(1))}.

The CDE model (5) is discretized, the output is fed into a loss function
(L2, cross entropy, etc) and trained using stochastic gradient descent.

Here (4 and fy are neural nets, z is hidden state: Continuous Time RNN
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Neural Controlled Differential Equations (NCDEs)

CDEs are reparameterization invariant and well suited to tasks involving
(partially-observed and/or irregularly sampled) multivariate time series.

\ﬂ\
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Figure: Illustration of the RNN and NCDE models (taken from [2]).
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Neural Controlled Differential Equations (NCDEs)
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NCDEs work! (and allow for memory-efficient training)

Model Test Accuracy Memory usage (Mb)

GRU-ODE  47.9% +2.9% 0.164
GRU-At  43.3% +33.9% 1.54
GRU-D  32.4% +34.8% 1.64

_ODE-RNN 659%+35.6% ____140
Neural CDE  89.8% + 2.5% 0.167

Table: Speech Commands classification (regularly spaced, fully observed)

Model Test AUC Memory usage (Mb)
GRU-ODE 0.852 +0.010 454
GRU-At  0.878 +0.006 837
GRU-D 0.871 4+ 0.022 889
_ODE-RNN _0.874+0016 = _ 69 _____
Neural COE 0.880 + 0.006 244

Table: PhysioNet Sepsis prediction (irregularly sampled, partially observed)
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Conclusion and related work

e Neural CDEs are a model for continuous paths (and time series),
at the intersection of Path Signatures, ODEs and Neural Networks
(enjoying the benefits of all three!)

e “Neural Rough Differential Equations for Long Time Series” [4]

® Subsequent applications:

— Reinforcement learning for healthcare [5]
Continuous-time multiscale control in robotics [6]
— Modelling of counterfactual outcomes for healthcare [7]
Signature-based autoencoder for feature extraction in NRDEs [8]
CDE discriminator in GANs: Neural SDEs [9] and ECG Synthesis [10]

e Software available:
- https://github.com/patrick-kidger/torchcde
— https://github.com/patrick-kidger/diffrax
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https://github.com/patrick-kidger/diffrax

Thank you
for your attention!
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